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NEAR FIELD DIFFRACTED AT A DIELECTRIC WEDGE

A, A, Aleksandrova and N, A, Khizhnyak UDC 538.566+621,371

The integral equations of macroscopic dynamics [2] are used in [1] as the basis of a solution to
the problem of the diffraction of a plane electromagnetic wave with a known polarization at a
rectangular dielectric wedge, Expressions are given in this paper for the total electromagnetic
field both inside a dielectric wedge of arbitrary flare angle and outside the wedge. The method
used is the same as in {1},

1, Field Structure inside the Dielectric Wedge

Suppose that a plane electromagnetic wave is incident on a dielectric wedge of arbitrary flare angle o,
The dielectric permittivity € and the magnetic permeability 4 of the wedge are in general complex and of
arbitrary value, Without loss of generality, we can choose the polarization of the incident wave so that the
field has the nonzero components

E; = (Ex, 0, 0), H = (0, Hyy, Hoy),
~ where

Ezy (0, §) = Eqge 0077,
@, is the angle of incidence reckoned from the face ¢ = 0 (Fig. 1.

Then the field inside the wedge will have the same polarization and nonzero field components E = (Ex, 0,
0) and H = (0, Hp » Hy), where Hp, Hy are cylindrical field components. The field can be represented as a set
of plane refracted waves and an edge wave in the form of a Sommerfeld integral

E.(p,9) = 2 Aje”""""?“" @y -+ jeiksl’"s?moswﬂv F(m) dn;
7 &

Hy (o, ¢) = — V“f‘; {E A;e™OVEREOSO—93) o5 (h; — ) - | o0V EHos®—M cos (14— ¢) - f (n) dn}; {1.1)
3}

Go

Hylo, ) = V%{*‘;S AgeltV IO ip (i, — @) - [ eikeVTReoso—m sin (n — g} - £ (n) dn.
Go
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Fig, 1 Fig, 2

Let us consider the first part of the solution — the set of plane refracted waves, Three situations arise,
depending on how the faces of the wedge are illuminated by the incident wave, We take these cases separately.

If the incident wave illuminates only one face (p = 0 or ¢ =), then only one refracted wave is excited
inside the wedge (and this lies in the regions 0 = ¢ =y, or §» = ¢ =< «, respectively). The wave amplitudes are
defined by equations which correspond to the Fresnel equations: for illumination of the ¢ = 0 face

2E . Sing, - cosP; -

" ‘ i ; (1.2)
8in (@g 4~ ¥1) + (R — 1) sin @y * cos P,

Ay -

and for illumination of the ¢ = o face

1 2E, . sin (@ — @) - cos (@ — ) - p

* = B — g — %) F (A1) 510 (@ —99) - 608 (& — V)’ 1.3)

where the refraction angles yy and y, measured {rom the face ¢ = 0, can be found from the well-known laws
for the refraction of electromagnetic waves ata boundary with a dielectric: with the given geometry we have

V ep cos §, = cos @g, V Ep cos (o — Py) = €0 (& — @o). ' 1.4

In the general case when both faces of the wedge are illuminated (0 = ¢y = «) we have two refracted waves
whose amplitudes are given by (1.2) and (1.3). However, we must distinguish various cases,

Agsume that the dielectric wedge is made from a material for which €u > 1; then the following situations
are possible,

1, If @ < /2, then both refracted waves exist at all points inside the wedge, Thus for each of the internal
points r € V the refracted plane wave is of the form

2

- 2 Ajeih,oV;ﬁcns (qaj—q:)’ (1.5)

i=1

E phint™

where A , and 3, 5 are defined by (1.2)~(1.4).

2, Ifa> 7/2, then we can consider the inside of the wedge as consisting of three separate regions (see
Fig, 1), In the first region there is only the one wave refracted at the face ¢ = «, and the internal plane wave
can be represented by the single term '

2

In the second region j > ¢ > y, there are two refracted waves together and Ep) is given by the full sum (1.5).

1— Aqe‘ikp]'re_,l.l-cos(\l?z_m), o> P = lpl'

In the third region g, > ¢ > 0 there is again only the one refracted wave formed by the first face
Ep = Aot Eoosv—0) p,>¢>0.

Ifthe dielectric wedge is made from a material which is less dense than the ambient medium then additional
situations are possible and these need to be considered separately. In what follows we everywhere assume e > 1.
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We now consider the remaining term in (1.1), which is in the form of a Sommerfeld-type integral with
the weighting function f(n). This term gives the edge wave which once again is defined by different relationships
depending on the angle of observation ¢ of the transmitted wave. Before turning to definite expressions for the
weighting function, we consider the general nature of the diffraction solutions represented in the form of the
Sommerfeld integral whose contour Gy is shown in Fig, 2. Solutions in this form satisfy all the requirements
applied to integral-type solutions of the Maxwell equations,

We can assume that they are finite, continuous, single—&alued on the Riemann surface for all p > 0, have
the required singularity at p = 0, and satisfy the principle of radiation at infinity [3].

It is not difficult to prove by direct calculations that the differential Maxwell equations

ikwH, = (1/p)0EJog; ikuH, = — 9E./do; (1.6)
—ikeE, = (1/p)o(pHy)/dp — (1/p)oH /¢

satisfy (1,1) independently of the form of the function f(z).

We now write out the expressions which show how the weighting function depends on the angle of observa~
tion of the transmitted wave, We consider the general case where hoth faces of the wedge are illuminated,
When o~ arccos (1/vE1) < ¢ < w, 0< ¢ < arccos (IAep), Ren = ¢ the solutions can be represented as branched
functions on a Riemann surface which is constructed above the plane of the complex variable 5(z) for the func-
tions z = arccos(yEx cos 1), z= 0 —arccos [VEL cos (o —n)]:

.o 0 X .
cos (u/n)) 4 sin TFl/su—-cos - 8ot ¥;) ) .7

—— | = _9‘_ —_——— T y
[0 “ain [ o
Ve ep—cos? = - usin —
n n

f (arccos

cos (a — u) 4, sin = Vap — cos? (oc — u) LR D]
o J X i
f - Tarceos _~_— =

n
=T I e —u) '
wn []/sy — cos? (u) ~+ nsin L]

n n

— 1.8)
ep

where
—u ) ]\

= . (1.9)
(1/_8?0"5 ‘ij _cosﬂ) [Vm cns (a—‘rj}_ms (aTﬂ)]

n n

{(s — 1) p- (=1 Vencos <¢'"

H

gsc(u: 'q)l) =

When arccos (1/VER)< ¢ < ¢, § < ¢ < @ — arccos (I/Vep) the branched solutions go over to the normal solu-
tions corresponding to the case j=1, 2

f'/al’('C()’i cosuy _ _'/IL Ve,u—cus'— wesino- g (u, q’;j). a 10)
K Ven) 23 (Vep—cosu + wsin ) :
$ (7 —— 1)y A, /eu—cos"-’z—u)-g oY) - osina

Flo — arccosw) = Y LML (e ) ) (1.11)

Y Ven ) 201V ew —cos¥ (7 — ) - uosin (2 — )] :
where

(r— L+t — D Veeos (&, — 1)
g, p;) - L (% — ) (1.12)

— 1, f — :
{1/ £l cos ff —cos ) ]1"‘/%‘}! cus (2 — ip;) = cos (7 — u)}
\ L /

Finally, when ¢» < ¢ < g, we get a solution which is the inverse to that for j =1, 2

-

< sin o Ve — cos? u N i

i (arccos S84 . Sinz Vep Sl z (— 1Y L (u ¢)) ¢
ep 27i (] ep — cos? u - p sin ) = ;
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{26 — o+ arceos []/e_p cos (% — w‘j)] — arccos []/a_;—t cos x‘pj] ]

X . - _
A {o — arccos (1/1-;1 cos q‘j) — arecos U/ey cos (2 — 1l;j)] b
f (o — arceos S5 —1) sin @ V/en — cos? (@ — u; .
7L — IS — [ ; - e
( Ve ) 220 | Vew —cos? (m — ) <+ w sin (o — u)l

s

{20 — o - arcens H/&}l cos (4 — )I_ arceus (Vey cos t',].\}
x X (—1y A]g(u ) =
=~ [ —arccos (Vep cos §;1 = arccos []/sp cos (o — ¥5)) )

where g(u, zpj) is defined by (1.12) and AJ and ‘Pj by (1,2)-(1.4).

If only one face of the wedge is illuminated (¢ = 0 or ¢ = «), the weighting function is given as follows:
for 0 < ¢ < arccos (INepn), a — arccos (1/VEL) < ¢ < a, f(n) is defined by (1,7) and (1,8); for AT <@ <o~
arccos (1/Vep), it isgiven by (1.10) and (1.11); j = 1 when the face ¢ = 0 is illuminated and j = 2 for illumina-
tion of the face ¢ = «.

2, Structure of the Scattered Field on the Dielectric Wedge

The general form of the electromagnetic field outside the wedge [7 = ¢y =, & < 2 arccos (1Aep)] is

l:'xo( ]/%sin Py —sin q'“) o HOCOS(Q-Ga)

Ew(p, ¢) — — + Prdp, @)
K (1/ iﬂ sin P, ~= sin (p,) = @.1)
; ), [y = \ .
x (0, ¢) i 2,[__(“\ 2.1'\:,
]Exo (0, 9) -+ Pr (0, ¢, G <9< 20 — ¢,
\Pe, (0, 9, AEN N
{ (V_ sin g, — sin g, ) ikp cos (Q-+@o)
Exy (p, 9) sin (9, — @) + - X
- (l/ — sin Y, -+ sin ¢,,)
H(p,g)= oo (2.2)
. X S (@ + @) + P, (0, 9), 21— ¢ < ¢ < 2m,
Eso(p. @) sin(@o — ¢) + P, (p ), P <P 27— G
Py, (0, 9), a<<Q <G
cos (¢ -+ fp[;) Ex()(]/’zl‘sin Py — sin q,,)e“‘pc"s(“:*"“’ _
— Exy (p, 9) cos (¢ — o)+ =" ' -+ Py, (9, 6), 21— gy <o < 2m,
(V‘ﬁ siny; - sin %)
Hylp.)= @.3)
— Exo (ps ¢) c0s (¢ — @) -+ P, (p, ¢), G <@ < 20— g,
Py, (0, 9), 2P @,
where
I; . - sin r S‘ eikpcos(1c+qa) (u)c(u)du . g' eik,ocns(w»w) ( Nd l
. (0, §) = 4zinp |y, g J g(u)dul,
. . Gy 2
¢ & (7, 2x);
: (2.4)
sin— 2 | . ikpe — ‘
Py (p,9) = — —"_‘4,-11-,2'; () e FPeOst TN (yydu ' — S e RPEOSUAI=2N 0 () ¢ (@ —u) du}, 9 = (a, )
Gy G2

sin— (| A i .
Pisy (02 €) = g {j e P Vg (u)sin (u + @) - e(u)du + Y oI D (u) sin (u — @) dul, ¢ (m, 2m);
Gy ! G:
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4ainp

A
-1 ' St .
Py (0, 0) = — s {f o089 (1) sin (u — ) d +

G, )
+ g elRPeOste—2)g (uysin (u + @ — 2a) - e (2~ u) du}, pe(n, a);.
& ' -

Pig(p:9) = — oo {‘ § et ) cos (u+ @) - cwdut-

G

g

-+ g gHPeO =g 13 cos (u — ) du}, ¢ e, 2n); -

- )
Py, lp, @)= — s {"'5 o' =D g (1) cos (u — @) du +

4min

+ S qihpcos(u+w——2a) g (u)cos (u+ ¢ — 20) - ¢ (&t — u) du}, @ = (n, );
G: '

g(u) is given by (1.9),

o

I/ N L u
ep—cos® —— usin

n
c(u)z e s
V ok X

Eft — CO8 n “!")" 8in "7

and the contours Gy and G, are defined, respectively, by the equations of the curves:

u = arccos () en cos ), N € Gy;

u = o — arccos)/ ep cos {a — )1, 1 & G,.

It can be shown that the scattered field components (2.1)-(2.3), which have been derived from the integral Max-
well equations [2], also satisfy the differential Maxwell equations (1.6).

3., Field Structure in the Neighborhood of the Wedge Faces

For the fields inside and outside the wedge we already have explicit expressions which satisfy the Max-
well equations and so we can immediately proceed to a study of the field structure in the neighborhood of the
faces and to a simultaneous verification of the correctness and validity of the whole method of constructing the
solution to the diffraction problem. We have to check that the solutions satisfy the boundary conditions on the
side faces of the wedge:

E’sc= Ey

i’ Hy =H i D= D“:‘n‘ By = B"in for =0, ¢ =u,‘where E, = E,, H, = H,, B, = B,.

In order to save space, we give detailed calculations for two cases only: we derive the expression for Ey
in the neighborhood of the face ¢ = 0 and at the same time we check that the tangential component of the electric
field is continuous at ¢ = 0 and ¢ =¢, We make the change of variable y —¢ = u in the integral term of (1.1) and
we expand the weighting function under the integral sign into a Taylor series in the small parameter ¢, Limit-
ing ourselves to the first two terms in the expansion and substituting the actual values of A, y, flarccos(cos (u/n)/
VEW] from (1.1), (1.4), and (1,7), we get the following expression for the internal field for small ¢:

o 3 ©
ikp cos 3 i e e plRDCOSU s
Eme‘ POOSPa) s5in @y - sin — S‘ eP g (u) sin S du

= - 5 — - @I (p); 1 {(®)= s eikpV el cosnf;o (mydn. (3.1
(VF sin ¥y - sin q>o> & V‘Si‘ —_ cosi—ﬂ~+ o sir;-; NEG—F

Ey(p, 0) =
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The first expression in (2.1) for the Ey component of the scattered field enables a solution to be constructed
on the face ¢ = 0, where PE (p, ) is given by the first equation in {2.4), In order to get the boundary value
of the field we carry out the followmg transformatlons, We reduce the integrals to a single contour G, because
the integrand is analytic over the internal region D," (defined by the contour I' = G; + G,). After some simple
algebra we find that the value of the scattered field for small ¢ is also given by (3.1), where

sin —
I (P) o 4mng { j‘ 1hpc05u [g(u) c(u)[w du — S 1kvcosug (u) du .
(ute)=6,y (u—§)EGy

It can be seen from (3.1) that the internal and scattered fields are identical on the face ¢ = 0.

A similar test for the continuity of the tangential component of the electric field can be made on the bound-
ary ¢ = o except that (1.8) is now used for the weighting function in the internal field and the contour G, is
deformed into the contour G, in the integral term of the scattered field, for which the last equation in (2.1) en~
ables the solution to be constructed on ¢ = o, The boundary values of the internal and scattered fields on the
face ¢ = o are then identical (y < a):

o—u
sin _ar;. 1kpws(u—a) p (¢) sin (T) du

T 2min o — —u\)
Gz gu — €0s? ( -

If we carry out similar operations for the remaining field components (1.1), (2.2), and (2.3) we see that

Ex (p! a) -

u) ~{-usin(a

llsc "].n

H‘sc:Htin'B =B, for ¢=0, ¢ =nc.

For the case where there are no re-reflections, i.e., large flare angles and small angles of incidence as
measured from the surface normal, we can distinguish the following regions in the internal and external fields
for illumination of the ¢ = 0 face, In the shadow region of the scattered field where o < ¢ < ¢, there is only
the edge wave (for kpygr > 1 it is a cylindrical wave) and for 2r — ¢y> ¢ > ¢, there is the incident and the
edge wave, Thus the ray ¢ = ¢ is the boundary between the illuminated region and the shadow region ¢,> ¢ > a.
Similarly, the ray ¢ = 27 — ¢, is the boundary between the region where there is a reflected wave (2r — @< @<
2m) and the region where there isno reflected wave (¢; <@ < 27 — ¢;). In the internal wedge-shaped region,
the shadow boundary ¢ = @ divides the physical space into two sections: 0=¢=4¢ and y; = ¢ = o, In the
first of these the cylindrical wave interfereswith theplane refracted wave, In the geometrical shadow region
(#; = ¢ =a) the cylindrical wave is isolated from the other waves. Near the shadow boundary ¢ = g, . o — @y,
i.e., in the penumbra zone, the field is more complex and cannot in general be expressed in terms of plane
and cylindrical functions., A more detailed study of the edge wave shows that in the ne1ghborhood of p = p, the
field is equal to

BV T/ ol TRl VoarVemo-se
p.(hpl cH-—1/4)— kol E'"i“ﬂQ I if ((f‘) [cos hl—"‘— q_) _ 1] s .
- Sp © dg»
8 3.2)

§5 = 2sin? (V' — ""),

=

with f(¢) given by (1.11). The integral which appears in (3.2) is the Fresnel integral; its lower limit is equal
to infinity in absolute value and its sign is taken from that of sin {(y —¢)/2]. Thus the lower limit changes sign
across the plane-wave boundary ¢ = y and the integral undergoes a discontinuous jump which ensures that the
diffraction field is continuous across the shadow boundary.
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